
——

EE/CprE/SE 491 - sddec23-10
Developing a Deep Learning Model to Automatically Detect

Microscale Objects in Images and Videos

Week 5 Report

02/27/2023 – 03/5/2023
Client : Professor. Santosh Pandey
Group number: 10

Team Members:
Katherine Moretina
Ethan Baranowski
Chris Cannon
Matthew Kim

——

Past week Accomplishments
● Group Discussion with client outlining and documenting the system specifications

(Hardware and Software).
● Image collection process demonstration by Yunsoo Park.
● Additional team member gained as an undergraduate researcher assigned to the project

(introductions will be soon)
● In depth analysis of YOLO vs SSD vs Faster R-CNN algorithms yielding selection of

Faster R-CNN as algorithm of choice.
● Began code practice tasks where we are looking through Faster R-CNN implementations

for understanding and translation into our program.
● Compiled multiple research documents that outline the various phases of our research

investigations and reasoning selection for that algorithms.

Use Case Diagram

Scanning Stages (Dataset preparation) - Everyone

Get Samples. Half of them are without nematodes and the other half are
controlled.

Left without / Right with

Use scanner to scan four sides (Front, Back, Left, Right)

Select area to be scanned

Left-With cysts / Right - without

Also use smartphone to take picture and video

Faster R-cnn focused research - Matthew
Examples of Faster R-CNN Process
Bring data and separate that data into training and testing.

How to setup Faster R-CNN using anaconda
https://pub.towardsai.net/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custo
m-dataset-88dd525666fd

1. Create virtual environment and active anaconda
2. Install tensorflow GPU

a. conda install tensorflow-gpu==1.15.0
3. Upload the Tensorflow model file. (Soybean files)
4. Put the Faster R-CNN Inception V2 model in the object detection folder

How FasterRCNN works and step-by-step PyTorch implementation
https://www.youtube.com/watch?v=4yOcsWg-7g8

Example faster R-CNN implementation
https://github.com/herbwood/pytorch_faster_r_cnn/blob/main/faster_r_cnn.ipynb

This example uses Pytorch to implement the R-CNN.
Single image example

1. Pre-training.
a. Define a pre-trained model. Then from all models, get a sub-sampling ratio of

50x50 sized layers.
2. Anchor generation layer

a. In the anchor generation layer, the author generated an anchor box.

https://pub.towardsai.net/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custom-dataset-88dd525666fd
https://pub.towardsai.net/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custom-dataset-88dd525666fd
https://github.com/herbwood/pytorch_faster_r_cnn/blob/main/faster_r_cnn.ipynb

b. Image size was 800x800, therefore sub-sampling ratio is 1/16, which total of
22500 anchor box needs to be created.

c. In anchor_boxes coordinate of the anchor box was saved. (x1, y1, x2, y2)

anchor_boxes[index, 1] = ctr_y - h / 2.
anchor_boxes[index, 0] = ctr_x - w / 2.
anchor_boxes[index, 3] = ctr_y + h / 2.
anchor_boxes[index, 2] = ctr_x + w / 2.

3. Anchor Target layer
a. Selects anchor box to train RPN.
b. Only selects image that are inside boundary

4. Get Ground truth box and IoU for the anchor box.
a. For each ground truth box and iou, if their value is greater than 0.7, save that

anchor box to positive sample, and if less than 0.3, set them into negative
sample.

b. Save positive sample into 1, and negative sample into 0.
5. RPN(Region Proposal Network)

a. Define RPN.
b. Calculate the loss.

6. Proposal layer
7. Proposal Target layer
8. RoI pooling

a. Use feature map and the proposal target layer from the feature extractor.

Faster RCNN Github Research - Chris Cannon

Code Analysis

https://github1s.com/rbgirshick/py-faster-rcnn

● This implementation uses pycaffe and Caffe instead of Pytorch.
● It has lots of examples, documentations, and tutorials, under caffe-fast-rcnn/examples
● Has two modes - classify and detect, with their own files

○ caffe-fast-rcnn/python/classify.py
○ caffe-fast-rcnn/python/detect.py

● Focusing on detect, since we don’t necessarily need to classify for our project.
● detect.py

○ creates a detector from ./caffe/detector.py
○ handles i/o
○ Calls the detector’s relevant detect function

■ detector.detect_windows()
■ detector.detect_selective_search()

○ Produces output based on detector’s behavior
● detector.py

https://github1s.com/rbgirshick/py-faster-rcnn

○ detect_windows()
■ Do windowed detection over given images and windows. Windows are

extracted then warped to the input dimensions of the net.
■ Parameters:

● images_windows: (image filename, window list) iterable.
● context_crop: size of context border to crop in pixels.

■ Returns:
● detections: list of {filename: image filename, window: crop

coordinates, predictions: prediction vector} dicts.
■ Process:

● Loads each image in images_windows as a matrix/array of floats
○ For each image, for each associated window, crops the

image to the window, and appends that result to an array
called window_inputs[]

○ Preprocesses it to change dimensions to match what is
needed

○ Does some magic to create predictions, I couldn’t find
where it happened.

● Packages predictions with images and windows
● Returns that list

○ detect_selective_search()
■ Essentially just runs detect_windows() on a list of images with a specific

list of windows.

Packages Research

Argparse
● The argparse module makes it easy to write user-friendly command-line interfaces by

allowing the program to define arguments, and argparse will handle finding them from
sys.argv. Also automatically generates help and usage messages.

Caffe

● Caffe is a deep learning framework from Berkely AI Research (BAIR)
● pycaffe is a python library that makes use of Caffe after using import caffe:

○ caffe.Net for loading, configuring, and running models.
○ caffe.Classifer and caffe.Detector provide convenience interfaces for

common tasks
○ caffe.io handles i/o with preprocessing and protocol buffers
○ caffe.draw visualizes network architectures
○ Caffe blobs (Binary Large OBjects) are exposed as numpy ndarrays for

ease-of-use and efficiency.

https://caffe.berkeleyvision.org/

Selective_search_ijcv_with_python

● This is a package that wraps a matlab functionality described here for use in Python.
● The goal of selective search is to intelligently generate potential windows, instead of

exhaustively generating windows over the entire image.
○ I believe that it uses pixel values to detect roughly homogenous regions quickly

Faster RCNN Implementation and Python Package
Research-Katherine

Code Analysis
https://github.com/jwyang/faster-rcnn.pytorch

● Uses Pytorch instead of Jupiter Notebook
● Supports 3 pooling methods- Roi pooling, roi align, and roi crop
● Prerequisites

○ Python 2.7 or 3.6
○ Pytorch 0.4.0
○ CUDA 8.0 or higher

● Has a train, demo, and test set
● 3 main steps

○ Generating region proposals
○ From each region proposal, a fixed-length feature vector is extracted using image

descriptors
○ The feature vector is used to assign each region proposal to either background or

object classes
● Went through demo.py to find the stages

○ Creates an array for different classes line 168
○ Creates architecture line 188 and loads model after
○ Everything is in faster-rcnn.pytorch/lib/model/faster_rcnn/faster_rcnn.py
○ Define region proposal on line 30
○ Find weights on line 116- feature extractor
○ Evaluates Detections on line 325 of demo.py

Package Research
● Researched 3 different python packages

○ Import torch
■ The package allows code to use PyTorch

○ Import sys
■ Provides functions and variables that manipulate the python runtime

environment

https://www.koen.me/research/selectivesearch/
https://github.com/jwyang/faster-rcnn.pytorch

○ Import pdb
■ Python debugger- provides an interactive source code debugger

Individual Contributions

Member Tasks Completed Hours
This
Week

Total
Hours

Katherine Moretina Went to all required meetings- learned how
to get images of soybean roots, general
meetings. Researched RCNN
Implementation and three python packages.

5 19

Matthew Kim Attended regular meetings to discuss which
algorithm to choose. Also learned the
process of preparing datasets. How to scan
soybeans. Researched on R-cnn focused.

5 15

Chris Cannon Attended regular meetings, did in-depth
research on an RCNN implementation and
three python packages. Created use-case
diagram.

6 18

Ethan Continued task development and deployment
for iterative progress on algorithm selection
and development.
Attended group meeting for discussion on
system specifications and requirements for
both the algorithm (software) and application
implementation (hardware).
Attended lab meeting where Yunsoo Park
walked us through the image collection
process and discussed possible
optimizations.
Talked with Prof. Forrest Bao (Machine
Learning Expert) for feedback on project
progress and development. He clarified we
have enough features across the 1000
nematode images to loosely train a CNN or
properly train a lesser algorithm called SIFT
(to be investigated).

10 23

Plans for Coming Week
● Investigate R-CNN implementations and create a baseline algorithm for us to modify for

our purposes.
● Start labeling data with Label Studio software for training set. (reduction from 2000

images to 1000 images as only the cysts are required for feature training).
● Have Yunsoo Park walk us through coding on the lab computer.
● Setup Jupyter Notebooks server for student collaboration.
● Investigate SIFT machine learning algorithm for possible simplified object detector that

will help simplify algorithm training and implementation.

